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ABSTRACT 

A numerical model is designed for studying the time-dependent properties of 
linearized and vertically propagating gravity and acoustic waves in the atmosphere. 
A finite-difference scheme with second-order accuracy is developed and analyzed for 
stability and other computational properties. Test computations are made and presented 
for gravity waves with and without a critical level, and for an acoustic wave. In all 
three cases the numerical results compare satisfactorily with theoretical results. 

I. INTRODUCTION 

In a discussion of the critical layer for internal gravity waves in a shear flow, 
Booker and Bretherton [l] have emphasized the limitations of a steady-state 
analysis or even an asymptotic-state analysis for gravity waves in the atmosphere. 
The analytical forms for the time-dependent solutions can be complicated by 
Laplace transforms [ 1,2] and readily subject to solution only in the limit of long 
time intervals. In addition, further study of internal gravity motions requires 
extensive consideration of the nonlinear aspects of the problem, e.g., time depend- 
ent large-scale motions and energy transfers between different scales of motion. For 
all of these reasons it was felt important to develop a general numerical model for 
time-dependent motions of the atmosphere which would be suitable for internal 
gravity wave and acoustic wave studies. 

This paper describes the first version of the model, which encompasses the basic 
numerical scheme for the linear equations. In a later model, rotation and time- 
dependent mean flow will be introduced. In the model’s fullest form, both perturba- 
tion and mean motions will be interlocked, yet separately distinguished, in a 
nonlinear system. 

The success of the model depends not only on an appropriate numerical scheme, 
but also on a transformation of the original equations which permits formulating 
the problem with only one space dimension and therefore very high resolution. 
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This is important because we wish to retain accuracy for all of the widely ranging 
scales of motion that can develop in the model. 

In the current linear version of the model, the solutions after a long time can be 
compared with a wide variety of known linear solutions for steady periodic 
conditions [3]. Also, for particular cases, comparisons for the acoustic wave solu- 
tion can be made even after short time intervals. Several comparisons will be made 
here to demonstrate the great degree of accuracy obtained in the numerical model 
even after tens of thousands of time steps. 

II. PHYSICAL MODEL AND BASIC EQUATIONS 

The physical domain modeled is the first 100 km of the atmosphere (Fig. 1). 
A compressible gas is considered, with all processes being adiabatic. A nonrotating 
Cartesian coordinate system is used, and the wave perturbations are chosen to vary 
in the x and z directions. (This is achieved by rotation of the coordinate system 
about a vertical axis.) A mean wind is taken in the x direction and assumed to be a 
function of z only. Under these constraints there is no motion in the y direction. 

As shown in Fig. 1, an artificial viscous drag, or Rayleigh viscosity, is also 
introduced into the model. This drag is proportional to perturbation fluid velocity. 
The proportionality constant is taken to be zero in the height range from z = 0, 

150 km 

IOOkm - 

w-o / 

RAYLEIGH VISCOSITY 

--------- 

REGION OF NO VISCOSITY 

w= f (1) 

0 

HORIZONTAL COORDINATE 

FIG. 1. Physical domain and boundary conditions for the numerical model. All dependent 
variables are periodic in the horizontal coordinate direction. 
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the lower boundary, to z = 100 km. From z = 100 km, the proportionality 
constant increases more or less exponentially to z = 150 km, the upper boundary. 
The purpose of this artifice is to simulate a “radiation boundary condition” at 
100 km, so that waves propagating to this level continue to carry energy to infinity 
without suffering reflection. The vertical velocity is set equal to zero at 150 km. In 
practice, waves generated in the lower region are greatly attenuated before 
reaching this level, and there is negligible reflection, 

In general, the initial condition for the operation of the model requires the 
complete absence of perturbation motion. This helps assure that no waves travel 
in the wrong direction. Nevertheless, initial nonzero values may be used. The 
numerical model is constructed so that after the initial time, continuous input of 
energy is possible at the lower boundary. As will be shown, only w must be 
prescribed at the lower and upper boundaries. The other variables are completely 
determined by the finite-difference equations, which will be described in Section III. 
For the current model, w = f(t) at z = 0, and w = 0 at z = 150 km, where f(t) 
is arbitrary (see Fig. 1). 

The linearized equations for the model include variables which are defined 
as follows: 

c. 

iFI 
PO : 

*. P . 
t: 

240 : 
ll*: 
W*: 

x: 
z: 

Y: 
PO : 

*. P - 

speed of sound, dypo/po 
acceleration of gravity 
coefficient of viscosity 
mean pressure 
perturbation pressure 
time 
mean velocity component in x direction 
perturbation velocity component in x direction 
perturbation velocity component in z direction 
horizontal coordinate 
vertical coordinate 
ratio of specific heats, cp/c, = 1.4 
mean density 
perturbation density 

All the mean quantities (u. , p. , po) can be functions of z, but not of x. The 
quantities p. and p. are related by the hydrostatic condition. 

The equations for motion, continuity, and for the first law of thermodynamics 
are as follows: 

for motion, 
au* ~+uo~ duo i ap* 

+w*~= ----=-Ku* (la) 
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and 
aw* aw* i ap* at+Uoax=--- 

PO a.2 
-$g- Icw*; 

for continuity, 

aP* at+uog + w* 2 = -p. (gL + %J; 

and for the first law of thermodynamics, 

aP* aP* 
- + uo ax at - - pow*g = -c”po ( 

au* aw* - 
ax +az. 1 WV 

The basic equations of (1) can be simplified if the horizontal periodicity is 
accounted for and if p. is eliminated by a variable transformation. Let 

u* = pi1/2Ueikx 
3 w* = p;1/2weikz, 

p* = p0+lPpeikz, p* = P+1/2peikr (2) 
0 > 

where k is the horizontal wave number. The new variables are analogous to the 
field variables defined by Eckart [3]. Substituting Eqs. (2) into (1) results in the 
following equations for these variables: 

au 
at= -iku,u - !fff!! w - ikp - Ku, 

dz 
aw ap B 
at= -iku,w - dz + T p - gp - Kw, 

aP * p . aw 
at= 

-zku,p + T w - lku - az , 

and 

where 

ap at= -iku,p + (g - q) w - c2iku - c2 $ , 

I,=-rap, 
p. az 3 

(3) 

and the dependent variables are now all complex. 
Modeling according to Eqs. (3) is far simpler than according to (1). In (3), one 

dimension is eliminated, and the density-weighted dependent variables tend to be 
of constant amplitude-range with height for steady conditions, rather than growing 
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exponentially. In addition, the squares of the amplitudes of the field variables may 
be related in a simple way to the wave kinetic and potential energies [3]. 

In the simple case when u,, = 0, K = 0, and j3, g, and c2 are constant, Eqs. (3) 
have well-known solutions [4]. For example, they can then be combined into the 
form 

a4w a4w _-- 
at4 at2az2 + (k2C2 + $) $ + (y - l)g?Pw = 0. (4) 

Solutions can be found with temporal and vertical periodicity of the form 

with the dispersion equation 
e -4k,z--wt)~ 

cd - to2 
[ C2(k2 + kz2) + 4c2 =] + (y - 1) g2k2 = 0, (5) 

where k, is the vertical wave number. 
For given wave numbers, k and k, , there are two pairs of solutions for w. The 

higher frequencies, where o w &c(k2 + kZ2)l12 for w > yg/2c, correspond to 
acoustic waves with upward and downward phase propagation components. The 
lower frequencies correspond to internal gravity waves, again with opposite signs 
of vertical phase propagation. 

Equations (3) can be written in the form 

where 

and 

B 

( 

u 
W 

m= 
P 
P 

m, = Am, + Bm, (6) 

-iku, - K - dtq,/dz -ik 
0 -iku, - K ;2 -g 

-ik BP -iku, 0 
- c2ik k - c2P/2) 0 - iku, 

The classification of the set (6) can be determined by analyzing its characteristics. 
These are found by setting Det I A - AiZ I = 0, where hi , i = 1,4 represent the 
characteristic slopes and Z is the unit matrix. The four solutions for Ai are 

+c, -c, 0,o. 
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The fact that these solutions are real and represent four linearly independent 
characteristic vectors indicates that the equations are hyperbolic and suited to 
solution as an initial and boundary value problem. The first two solutions for X 
correspond to the acoustic modes, the last two to the internal gravity wave modes. 
Since the latter values of h are zero when we know that internal gravity waves have 
nonzero vertical phase speeds, it is clear that the undifferentiated or linear terms 
in (6) are dominant, or at least important, in determining the wave properties. 

If Eq. (4) is considered as an initial and boundary value problem, it is well posed 
if one provides certain conditions. Since the equation is of fourth order in t and 
second in z, four conditions are placed on w for all z values at specified values of 
1; also, two conditions are placed on w for all values of t at specified values of z. 
The orders of the equation are not increased if a0 and du,,/dz # 0. Since U, p, 
and p can be specified in terms of w and its derivatives, the first four conditions can 
be satisfied by specifying these variables and w throughout z at an initial time 
t = 0. The other two conditions are satisfied by specifying w(t) at two particular 
values of z, the upper and lower boundaries of the model. 

III. FINITE-DIFFERENCE SYSTEM 

Because acoustic waves are allowed in this model, we know that the time step 
will be limited by At < AZ/C, where dz is the vertical mesh spacing. In order to 
achieve fine resolution for the slower-moving gravity waves and yet allow them time 
to develop significantly, it is necessary to have a finite-difference scheme that can 
apply to very many time steps. For reasonable solutions, therefore, the appropriate 
scheme should be at least of second order in accuracy and very close to neutral 
with regard to stability. 

It is advantageous to use a staggered grid in space, such that only w is defined 
on the boundaries. By extending this also to a staggered grid in time, it is a simple 
matter to construct a finite-difference scheme of second-order accuracy in both 
time and space. Figure 2 shows the staggered grid employed and the location of 
the four dependent variables. 

For linear equations we know that the “leapfrog” method [5] is neutral for the 
wave-equation part of (6) 

mt=Am,, (7) 

as well as of second-order accuracy. When the linear terms are considered, it is 
not certain a priori that a second-order scheme (in time) will also be neutral or 
close to neutral [6]. However, a scheme centered in all respects except for the 
viscosity terms seems to be satisfactory. The viscosity terms are lagged half a 
time-step for numerical simplicity. These terms do not appear in the region of 
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FIG. 2. Basic grid mesh. The variable w is represented by the dots and the variables u, p, 
and p are placed at the circles. Z represents the height of the upper boundary and T the final 
time. Variables are shown in a cluster correspondmg to the finite difference scheme given in 
the text. The arrows indicate the marching direction, and the numbering indicates the order 
in which this is done for a given position. 

interest, 0 to 100 km. Above 100 km, all that is required is that the finite difference 
formulation of the viscosity terms dampen the wave motions. 

If we make the following definitions 

Eq. (6) can be written 
rt = Rw, -I- Cr + Dw, 

wt = Sr, + Er - (iku, + K)w. (8) 
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The finite-difference scheme is then represented by 

For a given j, these equations must be solved in the sequence (9a) and then (9b) 
in order to have the necessary values on the right-hand sides at all times (see Fig. 2). 
The equations can be converted readily into explicit forms. This is done by solving 
for u using the equations for u and p, and then solving for p, p, and w in that order. 

IV. STABILHY ANALYSIS 

We apply the von Neumann stability test [7] to the finite-difference equations (9). 
This is a necessary but not always sufficient condition for numerical stability. 
Assuming periodic boundary conditions, the dependent variables can be expanded 
in Fourier series of the form 

where ar is the wave number in the z direction. Then, by assuming constant coeffi- 
cients for the linear finite-difference equations, (10) can be substituted into (9a, b) 
to result in an independent set of equations for each Fourier component amplitude: 
ii, p, j!, and W. If 6 = c&/2, these equations can be written 

where 
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FIG. 3. Vertical trace velocity and computational phase velocities for the two upward moving 
modes as a function of wavelength, shown in terms of 0 and the number of grids per wavelength, 
There is no mean wind. 
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Equation (11) can also be written in the form 

fin+l/Z = Gin-11’2 , (12) 

where G, the amplification matrix, is given by 

G = Y-lX. 

A necessary condition for stability is that the maximum absolute value of the 
four eigenvalues of G be bounded by 1 + M& where M is a constant. Numerical 
determination of the eigenvalues showed that their maximum absolute value was 
bounded by 1 + Mdt when the Courant-Friedricks-Lewy condition, dt < AZ/C, 
was satisfied and the viscosity coefficient was reasonably small. 

Since the numerical scheme is for very many time steps, it must be not only 
stable but also very accurate. The accuracy of the scheme can be evaluated by 
examining the magnitudes and phase angles of the eigenvalues for matrix G. If 
du,/dz = 0 and K = 0, then the magnitudes of the four eigenvalues of G are all 
identically unity, implying a neutral scheme. The phase angles can be converted 
to computational phase velocities. These are shown in Fig. 3 for the two upward- 

“‘“‘“;, u , , , , 1 0 9997 
a/1024 T/612 T/266 77,128 n/64 T/32 n/16 T/6 IT,4 77/z 

9 

,024 512 256 126 64 32 16 8 4 2 

I I I , I I L  I I 1  

WAVELENGTH (AZ) 

FIG. 4. Maximum and minimum amplitudes for eigenvalues for a mean wind shear of 
- lOma see-1 and a mean wind of -50 m se& as a function of vertical wavelength. 
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moving modes of the case du,ldz = 0. (For each upward mode, there is an equal 
but opposite downward-moving mode.) 

In Fig. 3, the computational phase velocity is shown by the unbroken line, and 
the vertical trace velocity, computed from the physical dispersion relationship of 
Eq. (5), is shown by the dashed line. For most values of 8, the vertical trace velocity 
agrees so closely with the computational phase velocity that it cannot be indicated 
graphically in Fig. 3. However, for the acoustic mode, at very short wavelengths, 
the computational phase velocity becomes significantly less than the trace velocity. 

If a velocity shear dz+,/dz is introduced, the eigenvalue magnitudes are no longer 
identically unity, but they show slight damping and amplification. Figure 4 shows 
the maximum and minimum magnitudes for du,/dz = - 1O-3 set-l and a,, = 
- 50 m set-l, with other parameters set equal to geophysical values to be described 
later. The largest and smallest magnitudes occur for a very large wavelength, about 
150 dz, and the greatest change indicated is f0.03 % per time step. 

If &,/dz = 0 and a small viscous damping is present (K # 0), analysis of G 
indicates that all of the wave modes are damped for all values of 19 except for one 
at the shortest possible wavelength, 0 = r/2, which remains identically neutral. 

V. TEST CASES 

In each of three test cases, a theoretical solution for the time-dependent or 
asymptotic time-dependent motions is compared with the numerical results. An 
isothermal atmosphere is assumed (Laplacian speed of sound, c = 300 m se+). 
For each case, the coefficient of damping is prescribed as follows: 
For z -=c z, , 

K = 0, 
and for z >, z0 , 

K = Kt[e(z-zO)/L - 11, 

where K’ is a constant, z0 is 100 km, and L (defining the vertical scaling) is set equal 
to 15 km. In the first test case the maximum Kdt is 0.10; in the other two it is 0.05. 
The vertical grid spacing is 250 m, i.e., there are 600 grid points with 200 in the 
upper damping region. The time step is 3/4 sec. 

Case A: Acoustic Wave 

An acoustic wave is produced with no horizontal variations, k = 0, and with a 
non-periodic forcing at the lower boundary: w = 1, t > 0. The theoretical solution 
[8] is given by 

I I 
t 

w=wg 1-G e,o 
Jl [-& l/v* - w] i 

--- 
1/G - (z/c)* dv ’ ( (13) 



350 HOUGHTON AND JONES 
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FIG. Sa. Numerical solution for real:w after 5 min, where k = 0 and ~(0, t) = 1. 
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FIG. 5b. Same as Fig. 5a but after 10 min. 
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FIG. 6. Comparison of theoretical and numerical solutions as a function of time at 60 km, 
withk=Oandw(O,r) = 1. 

where His the scale depth equal to c2/yg, J1 is the Bessel function of the first order, 
and v is a dummy variable for time. 

Calculations were made for 20 min of real time, or 1600 time steps. This took 
3 min on the Control Data 6600 computer. Figures 5a and 5b show the numerical 
solutions for w at 5 and 10 min, respectively. In the latter case, the damping effects 
above 100 km are quite evident. Figure 6 shows the comparison for w at the 60-km 
level between the numerical computation and the theoretical solution given by 
Eq. (13). 

Case B: Gravity Wave with No Mean Wind 

A steady forcing at the lower boundary corresponds to a horizontal wavelength 
of 100 km (k = 27~ x 10-r) and a period of 30 min with no mean motions. The 
forcing function, smoothed for the first part of the calculation to reduce sound-wave 
production, is given by 

w(0, t) = (1 - etwj2jt) eiot, 

where w = 3.4901 x 1O-3 set-l. 

(14) 



352 HOUGHTON AND JONES 

-1.0 

0 50 100 150 

ztkm) 

FIG. 7a. Numerical solution for real w after 3 h, with k = 6.28321 x 1O-5, w = 3.4907 x lo-%, 
and ~(0, t) = (1 - e’w/e)t) eiwt. There is no mean wind. Units are mks. 
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FIG. 7b. Same as Fig. 7a but after 6 h. 
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After a long time, the asymptotic solution is expected to approach the state 
described by the dispersion relationship of Eq. (5). With the given k, c, and o, 
and with g = 9.8 m set-l and y = 1.4, Eq. (5) yields k, = f3.5871 x lo-*. 
This gives a vertical wavelength of 17.516 km and a vertical trace velocity of 
*9.731 m set-l. 

The question remains as to how long it should take to reach the asymptotic 
solution throughout the physical region, 0 to 100 km. This can be estimated by 
computing the group velocity from the dispersion relationship (5), which gives 

c, = 
uc2ks 

2~2 - c2(k2 + kz2) - y2g2/4c2 * (15) 

For the parameters in this experiment, c, = F9.063 m set-I. The difference in 
signs means that the phase and group velocities are opposite. Since the energy is 
input at the lower boundary, only the modes with upward moving group velocity 
and downward moving phase velocity should be present. Furthermore, the group 
velocity indicates that it should take at least three hours for the steady oscillatory 
conditions to be established up to 100 km. 

Computations were made for 6 h of real time, and required 1 h on the Control 
Data 6600 computer. Figures 7a and 7b show the real w field after 3 and 6 h, 
respectively. In Fig. 8, the near-asymptotic conditions existing after 6 h are shown 
by the approximate constancy of the product real UW’ with height, where w’ is the 

0 

-2.0 

-6.0 

50 100 150 
z(km) 

FIG. 8. The product real (WV’) where w’ is the complex conjugate of IV for the numerical 
experiment described in Fig. 7a after 6 h. 
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complex conjugate of w. The vertical momentum transport is equal to one-half 
the magnitude of real UW’. The vertical wavelength determined from Fig. 7b is 
17.5 km, which agrees favorably with theory. Other oscillation modes created by the 
sudden start-up of w are still present as some of them have very small group 
velocities. The results of computations in motion picture form from CRT output 
show dramatically the downward phase velocity, together with an upward group 
velocity. 

Case C: Gravity Wave with Mean Wind Shear and a Critical Level 

Booker and Bretherton [l, 91 have discussed the effect of a critical level due to 
mean wind shear on the gravity wave. At this level, where the horizontal phase 
velocity of the wave equations equals the mean fluid velocity, a singularity occurs 
in the equations for waves with a steady state periodic oscillation. Bretherton has 
analyzed this problem in terms of the WKB approximation and concluded that a 
wave packet approaches this level asymptotically with ever-decreasing group 
velocity. In the steady-state solution, the vertical wavelength and vertical velocity 
vary as the square root of the distance to the critical level, while the horizontal 
velocity varies as the inverse square root of this distance. Also, the vertical 
momentum flux is constant below and above the critical level, but discontinuous 
across it. 

r(km) 

FIG. 9. Numerical solution for real w after 12 h, with k = 6.2832 x lo-&, w = 3.4907 x 1Om3, 
and ~(0, t) = (1 - e’“‘la)*) esWt. Mean wind is given by -10A5z m set-’ when 0 < z g 106 m, 
and by - 100 m xc1 when z > 106 m. Units are mks. 
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FOG. 10. Numerical solution for real u after 12 h for the model parameters given in Fig. 9. 
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FIG. 11. The product real (uw’) after 12 h for the experiment described in Fig. 9. 
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A numerical calculation was tried with u0 = - 1O-3 z m set-l and du,/dz = 
- 1O-3 set-’ up to 100 km, and then with u0 = - 100 m set-l above 100 km in the 
damping layer. With the same period and horizontal wavelength as used before, 
the horizontal phase speed was found to be 56.6 m set-l. Therefore, the critical 
level in this model is at 56.6 km. Calculations were run for 12 h. Figures 9, 10, and 
11 show the real w, U, and UW’ fields after 12 h. All of the behavior expected theoret- 
ically is demonstrated. 

If the calculation is continued, the vertical wavelength approaches the smallest 
resolvable (242) and truncation effects become noticeable. The u magnitudes do not 
continue to grow indefinitely but level off. This damping agrees with the analysis 
of the amplification matrix eigenvalues for mean wind conditions, which are 
approximately equal to those at the critical level. The solutions for the eigenvalues 
indicate that the two fast-moving modes (acoustic waves) amplify slightly and the 
two slow-moving modes (gravity waves) are both slightly damped. 

VI. CONCLUSIONS 

The numerical model described is shown to give rather accurate solutions for 
both accoustic and gravity wave motions. Accuracy is determined by comparing 
numerical results with theoretical solutions for asymptotic limits in the case of 
gravity waves, and with a particular time dependent solution in the case of acoustic 
waves. 

The model can have slow amplification of wave modes, but these do not seem 
to introduce large nonphysical errors. Calculations here show up to 57,600 time 
steps. Even in tests involving up to 115,200 time steps, the solutions show great 
accuracy. Of course, at critical levels, accuracy is gradually lost, but this problem 
is of local extent and is significant only after a long time. 

The viscous zone between 100 km and the upper boundary at 150 km provides 
a very good approximation to a radiation condition at 100 km. The reflected 
wave energy from the upper region is insignificant even for the fast-moving 
sound waves. 

The authors wish to thank Dr. J. Gary and Dr. A. Kasahara for reviewing the manuscript. 

1. J. R. BANKER and F. P. BRETHERMN, J. Fluid Me&. 27, 513 (1967). 
2. R. E. DICKINSON, Propagators of Atmospheric Motions [M.I.T., Department of Meteorology, 

Planetary Circulations Project, Report No. 18 (1966)l. 



NUMERICAL MODEL FOR GRAVITY AND ACOUSTIC WAVES 351 

3. C. E&ART, “Hydrodynamics of Oceans and Atmospheres.” Pergamon Press, New York (1960). 
4. C. 0. HINES, Canadian J. Phys. 38, 1441 (1960). 
5. R. D. RICHTMYER, A Survey of Difference Methods for Non-Steady Fluid Dynamics National 

Center for Atmospheric Research, Technical Note 63-2 (1963)]. 
6. D. WILLIAMSON, J. Computational Phys. 1, 51 (1966). 
7. E. ISAACSON and H. B. KELLER, “Analyses of Numerical Methods.” Wiley, New York (1966). 
8. H. U. SCHMIDT and J. B. ZIR~, Astrophys. J. 138, 1310 (1963). 
9. F. P. BRETHERTON, Quart. J. Roy. Meteorol. Sot. 92, 466 (1966). 


